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On numerical simulation of the continuous casting process
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Abstract. In this paper a steady-state nonlinear parabolic-type model, which simulates the multiphase heat transfer
during solidification in continuous casting, is presented. An enthalpy formulation is used and we apply a
FE-method in space and an implicit Euler method in time. A detailed solution algorithm is presented. We compute
the temperature distributions in the strand when the boundary conditions (mold/spray cooling) on the strand
surface are known. The numerical model gives thereby a good basis for the testing of new designs of continuous-
casting machines. An application of the model to continuous casting of billets is presented.

1. Introduction

A considerable amount of the world’s steel is now produced by the continuous casting
process. The complexity of this process is such that until recently innovations to machine
design could only be tested by full-scale runs on a production machine. This is extremely
costly and in many cases production cannot be delayed to perform such tests. However,
numerical simulation models of the continuous casting process have recently been developed
[1, 7, 8, 14]. They offer an important alternative mean of testing new designs.

The essential features of a continuous-casting machine are shown in Figure 1. The molten
steel is fed from a ladle into a water-cooled mold. The product is supported by rolls after
mold and cooled down by water sprays during the secondary cooling region. After the end
of secondary cooling (point z, in Fig. 1) the product is cooled down only by radiation. The
unbending point and the cutting point are at distances z, and z; from the meniscus,
respectively.

The rate at which the heat extraction proceeds is critical to the smooth operation of the
process, because undercooling can result in excessively long liquid pools and overcooling can
lead to the formation of cracks at the bending or straightening rolls. The heat extraction in
the sprays must also be arranged such that there is a smooth transition of the surface
temperature, with a minimum of reheating, as the steel passes from the mold to the sprays
and from the sprays to the radiation-cooling zones. The aspect of the spray design will be
discussed in more detail in a forthcoming paper.

The first step in the numerical simulation of the continuous-casting system is to have a
modified model for the heat equation with a moving boundary (liquid/solid). The main
difficulty is that the position of the moving boundary is not known and depends on the
variables which are to be solved. Such problems are usually known as Stefan problems
or moving-boundary problems. Furthermore, there exists a discontinuity in the moving
boundary: due to the effect of latent heat the temperature gradient across the solid/liquid
interface is discontinuous. For analytical and numerical approaches for Stefan-type problems
we refer to [2-5, 11, 13, 16-20].
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Fig. 1. Schematic representation of the continuous casting process; z, distance from the meniscus.

Our situation requires solutions of the heat equation with phase transitions, the location
of which is not a-priori known. Moreover, the boundary conditions are nonlinear. This
makes the solution algorithm quite complicated. This paper is organized as follows: first we
shall shortly derive the parabolic-type heat-conduction equation, the solution of which gives
the temperature distribution during the casting process. The variational formulation, which
is a basis of the FE-approximation, is given in Section 2. In Section 4 we present a detailed
solution algorithm for the problem in question. The algorithm does not need any a-priori
knowledge about the position of the moving boundary. Only the temperature of liquid metal
at the top of the mold and the cooling conditions are needed. Finally, in Section 6, several
numerical examples are presented. As a by-product of our result, we give a simple algorithm
(with numerical test) for the inverse problem, by means of which one can determine the
cooling conditions when a desired surface temperature is given (Section 7).

2. The mathematical simulation model for the temperature distribution in a
continuous-casting machine

2.1. The enthalpy formulation

The heat transfer from the interior of the strand cross-section Q = R?to the external surface

I" is assumed to be described by means of Fourier’s law. The nonlinear heat-conduction
equation can be written in the form

o(T)e(T) aﬁz T = div (k(T)VT) + q. (1)
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Here T = T(x, t)is the temperature in a point x € Qattime t; ¢ = ¢(T) constitutes a source
term corresponding to heat being emitted or absorbed; ¢ = 0 everywhere except in the
mushy region where latent heat is emitted. Furthermore ¢(7") denotes the specific heat, o(T")
the density and k(7') is the thermal conductivity. The geometry of the cross-section Q can
be, for example, a square, a rectangle (they may have rounded corners, as well) or a circle.
When local freezing in a mushy zone (temperature range [7,, 7;]) is occurring, the
associated latent heat L constitutes a heat source, which is taken care of by the source term
g in equation (1). By applying an expression f, = f,(T) which describes how the solid-phase
fraction varies with temperature, g can be expressed in accordance with equation (2):

o ofer
o) = oLt % @

In practice, the form of the f, versus T curve depends primarily on local solute redistribution.
To keep the solution algorithm in Section 4 simple, we assume that f; varies linearly between
solidus temperature T, and liquidus temperature 7,. Then the following relation is obtained:'

of, 1

= = ——=——;, T,2T.

aT Tvl — T; ’ 1 K (3)
If equation (3) is integrated with respect to temperature between the limits 7, and 7, the
value 1 is obtained. By equations (1)-(3) we get the heat-transfer model

o(T)L

I,- 1T,

[Q(T)C(T) + :

]i T(x,f) = div[k(T)VT]. )

The heat transfer from the strand surface to the environment is assumed to take place by
convection, conduction and radiation. We have the boundary conditions (5)-(7) when we
assume that heat is extracted by convection and conduction in the mold-cooling region,

0 . .
—k(T) n T = hpo(T — T,,4) in the mold region, 5
by convection and radiation in the secondary cooling region,
0 4 4 : . .
—k(T) n T = WT — Ty,) + oe(T* — Tg,) in the secondary cooling region, (6)
and by radiation only in the radiant cooling region,
g " PR : . :
—k(T) n T = oe(T* — T.,) in the radiant cooling region. @)

! The form of £, in the mushy zone depends strongly on steel analysis, and the assumed linearity of f; is the most
contentious aspect of the mathematical model. The form of f, can be determined experimentally (in recent years
it has also been determined mathematically) and there is a large metallurgical literature on the subject, starting
with the Scheil equation. The solving algorithm presented in Section 4 is easily extended to the case where f, varies
piecewise linearly in the mushy zone (see Fig. 2).



338 E. Laitinen and P. Neittaanmdki

Here T4 is the ambient .temperature, £,y and h are the heat-transfer coefficients in the
mold and in the secondary cooling region, resp., Ty o is the spray-water temperature, T,,, is
the ambient spray/radient zone temperature, o is Stefan-Boltzmann constant and ¢ is the
emission factor.

When pouring is commenced, the melt is assumed to have a temperature T,. Then the
initial condition can be written as

T(x,0) = T,; xeQ. ®

We shall use an enthalpy formulation for problem (4)-(8). To do this we shall define new
variables: the enthalpy

1) = [f|e@e + 2O e ©)

and the Kirchhoff transform

K(T) = [ k@) de, (10)

which both are smooth functions of temperature.
According to (4), (9), (10) and (5)-(8), our mathematical simulation model for the
temperature distribution T = T'(x, ¢) during the casting process can be written as follows:

%H(T) = AK(T) in Q x 10, &, (11)
hmold(T - Tmold) in I' ]O, tl],
0 .
—k(T) n T = T — Ty) + oe(T* — T4) inT x i, t,], (12)
oe(T* — T2) inT x |4, 4,
T(x,0 = T,(x) in Q. (13)

2.2. The variational formulation for model (11)-(13)

In order to use the Hilbert-space setting of problem (11)-(13), we introduce appropriate
function spaces. Let L?(Q) be the set of square-integrable functions with norm

1/2
ol = [J, e ax]
and scalar product

@ v) = [ u(x)v(x)dx.
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Let H'(Q) be the Sobolev space of order 1:
H(Q) = {v € LZ(Q)I ve L’Q),i =1, 2}.

Furthermore, we introduce the bilinear form

2 0 0
a(u, v) = i; (6_x, u, ) v)

and the L*(I")-scalar product <-, *),
vy = [ uG)o@) dr,

where I' = 0Q.

Multiplying equation (11) by a smooth function v € H'(Q) and using Green’s theorem and
equation (12) we obtain the variational formulation for problem (11)-(13): find H(T) €
L*(Q x 10, t,]) with T(x, ¢) € L*(H'(Q); 10, t,[) satisfying for all v € H'(Q) the relations:

( H(T)a v)+ a(K(T)s ‘D) _<hmold(x, t)(T - Tmold)s ‘Z)> inQ x ]0, tl]s (14)

( H(T), '0) + a(K(T),v) = —<hx, (T = Tiyo), v — 0T = TG, v

inQ x )4, 5], (135)

—oeT* — Tg, D inQ x 1, [, (16)

( H(T), >+ a(K(T), v)

T(x,0) = T, in Q. (17)

The results concerning existence, uniqueness and stability of weak solutions of problem
(11)—(13) can be distinguished according to types of hypotheses on the nonlinear flux term,
such as regularity, monotonicity assumptions, growth conditions and bounds. A survey on
the results available for weak formulations of the nonlinear Stefan problem in the multi-
dimensional case is given in [11].

3. Approximation of the problem (14)—(17)

In the approximation scheme the weak formulation (14)—(17) of the problem (11)-(13) is
used. The discretization is performed by finite elements (piecewise linear) in space and by
finite differences in time.

We consider a family .7, of regular triangulations consisting of triangles with vertices lying
on Q. To each 7, we associate a finite-element space (d is discretization parameter)

V, = {ve C'Q)|v is linear on every element of 7,}.
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Let L, be the space of traces of functions from ¥, on 0Q. Denote n = dim (¥,) and
p = dim (L,) where p < n. Let {x;}7_, be the set of all nodes of 7, and suppose {x;}/_, is
the set of nodes lying on I'. By v;(x) € ¥, we denote the basis functions (Courant’s basis
functions) associated with the node x;:

. 1, ifk =j;
X =
T {0, ifk # J.

We consider the uniform (A¢, the timestep) partition of the intervals [0, #], [#,, ;] and [t,, &]:

0 P<t< <Ml = (<Ml <o <t

<t < <t = g,

The discretization of the problem (14)-(17) consists of using backward differences in time,
and of linear elements in space. From (14)-(17) we thus get the nonlinear system for finding
Ti+!:

(H(T,5“) — H(T))

At ””) + a(K(TE™), o) + HGA T, 0> = (ol T,
1

forallveV,i=1,...,N; (18)

(H(T,5“) - H(T})

A7 ,v> + aK(T;H"), o) + KHH T 0y = oe(T3), )
2

= WHTS, vy + oe(Te ), vy forallve Vi

Ny, ..., Ny (19)

(H(T,5“) — H(T})

A ,'0> + a(K(T;*"), 0) + oe{(THY ', 0) = oel{(To)™, v
3

forallve V,,i =N, +1,..., N (20)

T = T,. 1)

The finite-element approximation T} € ¥, of the temperature T at time ¢ = ¢ has the form

Ti(x) = Zl T/ v;(x), 22)
=

where T = (T}, . .., T?) is the nodal-value vector of T}(x). Supposing that H and K are
piecewise linear in T we obtain interpolation expressions at time ¢ = ¢’

HT) = % HTwoe: K@) = ¥ KT)m. @)
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In order to approximate the integrals appearing the following quadrature formula for the
N-dimensional simplex S is chosen:

meas (S) Nl

(F) = ST Y FG),

where x' are vertices of S. Then we introduce the approximations

w,v) x w,v), = Y Ikwv); a(w,v) = aw,v); = Y, I(VoVo);

Kedy KeJd;
w, vy & {w, v); = Z I non (Wo).
KeJy
KnoQ#0
Setting v = v;,j = 1, ..., nin equations (18)-(21) we see that the computation of the
nodal temperature vector T°*', at time level #*',i = 0, ..., N — 1 is equivalent to the

solution of the nonlinear system

MH(Ti+1) _ H(T')

+ AK(T*') + BREL) T = BHX)TL, i = 1,...,N;;

Atl mold
(24)
T — H(T" . : ‘ s
MH( )Az () + AK(T'*') + B(H*)T'*' + geBT'*!
2
= B(K*")Tits + oeBTL", i=N+1,...,Ny;
(25)
H(T*") — H(T" . s .
M ( )At ) + AK(T™') + 0eBT'*" = geBTLt", i=N,+1,...,N;;
3
(26)
=T, @7

The matrices M, A, B are constant n x »n band matrices, M and A4 are positive definite and

B is positive semidefinite. The matrices M (mass matrix) and A (stiffness matrix) are defined
as

{(Ui,vj)d};":i=1’ 4 = {a(viavj)d};"',i=1-

Moreover, B = (b;) is defined as follows:

i

{d, i=j=1,...,p
0, otherwise,
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where d denotes the mesh parameter on the boundary I'. The notation B(#) denotes the
diagonal matrix with components

dh,, i=j=1...,p,

0, otherwise.

B(h)ij = {

4. An algorithm for solving the system (24)-(27)

In order to solve equations (24)—(27) we use iterative methods. In the system (24)-(27) the
nonlinearities are on the boundary I" due to the nonlinear Stefan radiation condition and in
the interior of Q due to the nonlinear material properties. However, for simplicity, we assume
that the material constants ¢, ¢ and k are piecewise constant functions of the temperature
T. It implies (see (9), (10)) that the functions H(T') and K(T') are piecewise linear continuous
functions of T. Hence, we are dealing with an implicitly linear system in the mold region
]0, ¢,]and in the interior of Q in the spray J¢,, #,] and radiant ]¢,, [ cooling region. Assuming
furthermore, that the strand surface in spray and radiant cooling region is in the solid state,
we can apply efficiently the combination of modified S.O.R. and Newton-Raphson method.
Assuming (for example) that the material properties are defined for three different
temperature ranges T < T, (solidus temp.), T, < T < 7, (liquidus temp.) and T > T,
then
(HT +c¢,, T<T,

HT) = {H,T+¢c,, T,<T<T,
kIJIT'i_cIa TZTI

(KT +d, T<T,
KT) = {K,T+d,, T,<T<T, 29)
KT +d, T>T,

Moreover, metallurgically it is reasonable to demand that the cast has a solidifying shell
when it leaves the mold. Hence the choice of the solution methods of systems (24)-(27)
depends on the boundary data, that is, boundary-conditions type (linear/nonlinear) and the
phase of boundary (known/unknown). Table 1 summarizes the situation. When using the
Newton-Raphson method, the solution T%+! = (Ti*!, ..., Ti*') can be computed at time
level i + 1 from the solution T* of the previous time level i. The calculation is made
component by component according to the iterative procedure

7= ‘m“}f’i = cuki = BO)uT, = obuly iy yyN,
— My, — akkKs - B(h )kk - 4£abkkT'I‘c

Fk - ”A'kkH]‘; - akkK;; —_ Eo'bkkT';:
—mkkHs - akkKs - 4£o-bkkTI':

Tl£+1/2 —

T —

> i=N2+1,...,N5
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Table 1.
10, 1] It 4l
Mold region Sec./rad. cool. region
Governing equation Implicitly linear Implicitly linear
Boundary condition Linear Nonlinear
Phase on boundary I Unknown Solid
Phase on interior Q Unknown Unknown
Method for solving eq. on I Modified S.O.R. Newton-Raphson
Method for solving eq. on Q Modified S.O.R. Modified S.O.R.
where
{(MH(T") + BW*)Tijo + 0eBTi ") — Qo i=Ny + 1,...,N, 1)
(M(HTY) + 6eBT*"™), — O,, i=N,+ 1,...,N;
and
k-1 ) . n . .
O = T O H(T*) + aK(T*) + 3 (GagH(T) + ayK(T)).
j= j=

Here we have denoted M = (r1;) = my/At, where | = 1, 2, 3 depending on the value of

time t €10, t,], £ € It,, t,] or t € 1t,, 5[, respectively.

In the mold region and in the interior of Q along the secondary cooling region we apply
the modified S.0.R. method. Because it is not a priori known where the free boundary lies
in the interior of Q, we must first test the value of F, in the algorithm which indicates in what
phase (solid, mushy, liquid) the computed node temperature T, *' will be. According to this
test we can choose the right values of H(T) and K(T) in the algorithm. Assuming that T*
is known, then T*' can be calculated using modified S.O.R. component by component

according to the following iterative procedure:

f F, — myc, — a4,

Py - , If
myH, + a, K, + B(hm-;lld k

F, < (M H, + ay K, + Bh)u) T, + Myc, + agd;

Ti+12 — F — Wy, — a4, if
P T+ 1 ’
i H, + ay K + B(lrogia )

F, > (M H, + au K, + BHabi)u) * T, + myc + ayd;

F, — my,c, — ayd,
Kmkka + au K, + B(h:n-:lld kk

, elsewhere,

where

Fk = (MH(Ti) + B(h:ntlld)Ti:l:i)k - Qk'

m¢

(32)

(33)
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So we get the algorithm:

ALGORITHM 1: (for solving (24)—-(27))

STEP 0. Set T':= T°, ite := 0.

STEP 1. Setite:=ite + 1, k:=0.

STEP 2. Setk:=k + 1.

STEP3. Ifie{0,...,N,} or x, ¢ I then solve T'*'” from equation (32) else solve
T'+'2 from equation (30).

STEP 4. Set Ti*! = T} + w(T;*'?* — T}), w € ]1.0, 1.85] an appropriate relaxation
parameter.

STEP 5. If £ < n goto STEP 2.

STEP 6. If |T;*' — Ti| < ¢|T}|Vk = 1, ..., n then STOP else set T" := T**!.

STEP 7. If ite < itemax goto STEP 1 else STOP.

5. Testing of the heat-transfer model

The difficulties associated with direct measurements on moving castings have made deter-
mination of solidification rates and temperature distributions difficult. An alternative
approach is to simulate heat transfer mathematically in a continuously-cast section and
calculate the temperature distribution as a function of the controllable variables of the
process. For that purpose the previous ideas and algorithms were implemented into a
Fortran 77 - coded computer program on a VAX 8600 under the VMS operating system.
The program has roughly the following modular structure:
* preprosessor: FE-mesh generation and efficient storing of the sparse matrices M and 4.
Only the nonzero elements of matrices are allocated.
® boundary and cast data generation: the user assigns the boundary condition by forming
an input file which includes the desired data.
® implementation of the algorithms: The discrete solutions for temperature distribution
and/or heat-transfer coeflicients are calculated and stored in files in view of their graphic
treatment.
® postprocessor: The graphic representation of the discrete solutions. For the graphic
outputs GPGS-F or DISSPLA graphic libraries are used.
In this section the continuous cast of steel billets is demonstrated.

5.1. The basic assumptions of the heat-transfer model!

The schematic representation of the continuous casting process in Figure 1 illustrates that
the strand passes through three distinct regions of cooling. Accordingly, the mathematical
model consists of three parts:

(1) solidification in the mold,

(2) solidification in the spray cooling region,

(3) solidification in the radiant cooling region.
The heat-transfer model is based on the numerical solution of the equations (11)-(13). The
model is simplified to a two-dimensional one because in continuous casting of steel the heat
conduction in the withdrawal direction is minute and can be neglected. The specific heat
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Fig. 2.

¢(T) and the thermal conductivity k(7") of steel are defined separately for several different
temperature regions, inside which they are assumed to be constant (Fig. 2). These assump-
tions imply by equations (9) and (10) that H(T') and K(T') are piecewise linear functions of
T as indicated in Figure 2. Moreover, the solid fraction f,(T) is assumed to vary piecewise
linearly between solidus and liquidus temperature (Fig. 2).

The convective heat flow in the liquid pool is quite complex due to the turbulent mixing
imparted by the input metal stream. It is taken into account in the model by defining an
effective liquid thermal conductivity, which includes the effects of convective mixing. It is
assumed to be roughly six times greater than the normal value of the liquid thermal
conductivity.

In order to solve equation (11) for the transient temperature distribution, boundary
conditions as well as an initial condition must be specified. The specification of boundary
conditions is done separately for the three distinct parts: mold, spray region and radiant

cooling region. A schematic representation of defining boundary conditions is presented in
Figure 3.

Mold. Heat transfer in the mold is governed by a series of three resistances: the casting/mold
interface, the mold wall and the mold/cooling-water interface. The thermal resistance of the
mold wall and mold/cooling-water interface as usually quite small compared with the
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time = 0. [
| gmotd = A — B\/t
|
k(T8 = 0.

Qspray = h(Taurf - THzO)
+06(T4 - T:ir)

surf

L I L -
\-Z T SSSN|
-

l
l
l
l Qrad = ae(T:urf - T:t'r)

Fig. 3. Schematic representation of the boundary conditions in one half of the strand centre plane.

thermal resistance between the casting and mold, which consequently controls the rate of

heat transfer in the mold.
For the case of billet casting we have used the following approximation for h_q:

1.5 — 0.3/max (0, t — 9.6) n’;—-’:;, x lies in the midface;

(34

Moo (% 1) = 1.5 — 0.3/max (0, ¢ — 6.4) ”%, - x lies in the corner;

parabolic fitting of the above values for other x.

Water-spray region. The purpose of the water-spray cooling is to continue the heat extraction
and solidification initiated in the mold without generating tensile stresses of sufficient
magnitude to cause shape defects, surface cracks or initial cracks. The spray chamber
consists of spray nozzles positioned between support rolls. Four individual heat-transfer
mechanisms, which act consecutively and/or in parallel, can be distinguished:

~ direct spray cooling

~ convective cooling by drainage water and by the vaporous atmosphere

~ radiation and

~ conduction to the support roller during contact.
In contrast to the mold cooling, the spray system is more flexible, from the standpoint of
controlling the rate of heat removal from the strand. Thus it is relatively easy to achieve a
desired temperature distribution in the strand by controlling the water pressure of the spray
nozzles. For the adjust of spray-water pressure and quantity a group of nozzles are linked
together forming a spray zone.

To carry out the spray design a stage further and transform heat-transfer coeflicients
(kWm~2(°K)™!) into spray-water flux profiles measured in Im~2s~!, empirical data relating
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to the two variables must be available. That is, water pressure, nozzle type and stand-off
distance affect 4 mainly through their effect on W.

Of course the relationship 4 versus W depends on casting conditions like strand size,
machine design etc. However, this relationship is easy calculated for a caster using the
inverse-temperature model with empirically measured Dirichlet boundary data and solving
the corresponding heat-transfer coefficients 4 from the Neumann boundary condition by
relation (6) (see Section 7).

Radiation zone. Radiation according to Stefan’s law is the dominant cooling mechanism in
this zone although some account is taken of the spray water which runs down the strand
from the secondary cooling zone above.

Above we have defined the general principles concerning the boundary data and casting
conditions in the simulation model of continuous casting. These principles are the same for
the billet and slab casters.

6. Results of numerical tests

Consider the case of billet casting. The numerical values of material and casting data are
shown in Table 2 and in Figure 2. The geometry of the billet’s cross-section is approximately
square with rounded corners (radius 5 mm) and the water cooling is assumed to be organised
symmetrically along each of the billet’s faces. Hence, for computational efficiency, we can
use only one quarter of the billet’s cross-section when we solve the problem. We approximate
the nozzles water-flux distribution along the billet’s horizontal side by a parabola (the corner
region needs less cooling than the billet’s midface). See Figure 4 for the representation of the
geometry and approximation of the water-flux values at a fixed distance along the strand.
One empirical water-flux measurement for a billet caster in 1/(dm? min) is shown in Figure
5. The shadowed area of the bars in Figure 5 indicates the difference of water-flux values
between corner and midface.

To solve the temperature distribution in the billet with the data given above, the water-flux
values must be transformed into heat-transfer coefficients. Doing this, we use the relation-
ship

h(x, ) = 0.13 x W(x, 1) + 0.1. (35)

Figure 6 shows the corresponding heat-transfer coefficients in the secondary cooling
region and the approximation of heat extraction in the mold according to equation (34).

Table 2. Material and casting data used

Carbon content 0.5% 0 7200 kg/m®

T, =T, 1485°C L 272kJ/kg

T, 1377°C 6 567 x 10-° W/m*K*
Trood 80°C € 0.8

Tus0 27°C Cross-section: 100 x 100 mm?
T.,, spray zone 97°C Casting speed 2.80 m/min

T., rad. zone 437°C Mold length 0.61 m
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Figure 7 presents the calculated temperature distribution in three points (see Fig. 4) of the
billet’s cross-section.

In the above example we have assumed that the water-flux distribution in the withdrawal
direction alters quite smoothly. However, this is not necessarily the case in practice. Due to
the complexity of secondary cooling system (support rolls, spray-nozzle gaps etc.) the

water-flux distribution may be as in Figure 8, where the nozzle-to-nozzle distances are long
and there can be found undercooled regions between the sprays.
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Fig. 6. Heat-transfer coefficients as a function of distance.

.- Centre
idface
orner

-

-
-

1:.
0091

oo¥! 0021 0001 008
(Do) @anjeIadursy,

11.0

10.0

7.0 8.0

6.0
Digtance down the strand (m)

1.0 2.0 3.0 4.0 6.

0.0

Fig. 7. The calculated temperature distribution in corner, midface and centre of billet’s cross-section as a function

of distance.

ANANNNNMNANNNY I

ANAANNMANINNNNANN, i ——

AN S————————

e o8 o8 00
(urwr,wp/T) Xnj Iajejy

11.0

10.0

9.0

8.0

6.0 8.0 7.0

4.0
Distance down the strand (m)

1.0

0.0

Fig. 8. Water-flux distribution as a function of distance.



350 E. Laitinen and P. Neittaanmdki

SN

Heat transfer coeff. (kW/m®*C)

Distance down the gtrand (m)

Fig. 9. Heat-transfer coefficients as a function of distance.

o
O
© 3
i J
— 1
‘OC)o.
(==
O3
=T
3o
-b-‘o_:
583
i ]
[ B
R ]
o
[« 20
A .
o ] “'"“\"““'\'\l"" oV e ke mmmmmmmm————— oo
4 v \I\I o\ P -
O LA I Y .
© ] A\UEN AR
ARAARARAS S A LA LA AR AR AL aas RARARRALAS RARRR ALY R R AR AaE s aah aa s naas A RAARAARS RARSARRASS LALAAARALY]

00 10 =20 30 40 60 60 70 80 8.0 10.0 110
Distance down the strand (m)

Fig. 10. The calculated temperature distribution in corner, midface and centre of billet’s cross-section as a function
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The corresponding heat-transfer coefficients related by equation (35) are shown in Figure 9
and the calculated surface temperature in the corner and midface of billet’s cross-section and
the centreline temperature are presented in Figure 10. In Figure 10 the surface temperature
seems to oscillate quite a lot. However, this does not cause bad defects in the strand because
the depth of oscillation is not deep and the solidified shell does not easily crack.

7. A rough algorithm to determine the water flux

We use the temperature model (11)-(13) inversely, too. We pose a question: How should one

choose the water-flux values on the surface to achieve a desired surface temperature along the
secondary cooling region?

3.0 4.0 6.0 8.0 7.0 8.0 9.0 10.0 11.0
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To give an answer to this question we replace in the model (11)-(13) the Neumann
boundary condition (12) in region [¢,, ¢,] by a Dirichlet boundary condition which defines
the desired surface temperature. When the temperature distribution in the strand is solved,
we use the flux condition on the surface to solve the heat-transfer coefficients and some
related relation for solving the corresponding water-flux values. The algorithm for solving
water-flux values is given below.

ALGORITHM 2:
STEP 1. For a given surface temperature T, solve the problem (11)-(13) with the Dirichlet
boundary data

T =T, onT x [, t,].

STEP 2. Determine the strand heat-transfer coefficient 4 from the relation
a 4
—k(T)a—n T = KT — Tyo) + 0e(T* — Ty) onT X [1, 1)

STEP 3. Determine the water flux W from relation (35) (or from some other similar
relation).
In fact, we can solve the relation between water flux W and heat-transfer coefficient 4 by
applying this algorithm and using the factory-measured surface temperature as a boundary
condition.
The desired surface temperature T, is given on the corner and midface by the equation

I.(x 1) {— 1.53 x ¢t + 1212.18, te€e[t, t,] (corner), 36)
X, t) =
¢ —1.42 x t + 1050.49, t€[t,, t,] (midface).

For the other points of I', T, is given by the parabolic fitting.

In Figure 11(a) we see the desired boundary temperature along the secondary cooling
region and in Figure 11(b) the corresponding water-flux distribution, calculated by the above
algorithm. To verify the results we have solved the problem (11)-(13) with the boundary data
asin Figure 11(b). In Figure 12(a) we present the calculated surface temperature and in 12(b)
the calculated center-plane temperature. By comparing Figures 11(a) and 12(a) we find that
the surface temperatures are almost the same.

8. Conclusions

Above we have presented and tested two algorithms. The first one is designed to determine
the temperature distribution of the strand when the heat-transfer coefficient (or water fiux)
along the secondary cooling region is given. The second algorithm solves the inverse
problem: which are the cooling conditions by which the desired surface temperature is
attained?
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